Step Training Reinforces Specific Spinal Locomotor Circuitry in Adult Spinal Rats

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Step training reinforces specific spinal locomotor circuitry in adult spinal rats.

Locomotor training improves function after a spinal cord injury both in experimental and clinical settings. The activity-dependent mechanisms underlying such improvement, however, are sparsely understood. Adult rats received a complete spinal cord transection (T9), and epidural stimulation (ES) electrodes were secured to the dura matter at L2. EMG electrodes were implanted bilaterally in select...

متن کامل

Epidural stimulation induced modulation of spinal locomotor networks in adult spinal rats.

The importance of the in vivo dynamic nature of the circuitries within the spinal cord that generate locomotion is becoming increasingly evident. We examined the characteristics of hindlimb EMG activity evoked in response to epidural stimulation at the S1 spinal cord segment in complete midthoracic spinal cord-transected rats at different stages of postlesion recovery. A progressive and phase-d...

متن کامل

OEG implantation and step training enhance hindlimb-stepping ability in adult spinal transected rats.

Numerous treatment strategies for spinal cord injury seek to maximize recovery of function and two strategies that show substantial promise are olfactory bulb-derived olfactory ensheathing glia (OEG) transplantation and treadmill step training. In this study we re-examined the issue of the effectiveness of OEG implantation but used objective, quantitative measures of motor performance to test i...

متن کامل

Novel and direct access to the human locomotor spinal circuitry.

The degree of automaticity of locomotion in primates compared with other mammals remains unclear. Here, we examine the possibility for activation of the spinal locomotor circuitry in noninjured humans by spinal electromagnetic stimulation (SEMS). SEMS (3 Hz and 1.3-1.82 tesla) at the T11-T12 vertebrae induced involuntary bilateral locomotor-like movements in the legs of individuals placed in a ...

متن کامل

Molecular and cellular development of spinal cord locomotor circuitry

The spinal cord of vertebrate animals is comprised of intrinsic circuits that are capable of sensing the environment and generating complex motor behaviors. There are two major perspectives for understanding the biology of this complicated structure. The first approaches the spinal cord from the point of view of function and is based on classic and ongoing research in electrophysiology, adult b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Neuroscience

سال: 2008

ISSN: 0270-6474,1529-2401

DOI: 10.1523/jneurosci.1881-08.2008